ReviewEssays.com - Term Papers, Book Reports, Research Papers and College Essays
Search

Black Holes

Essay by   •  December 30, 2010  •  Essay  •  1,229 Words (5 Pages)  •  1,612 Views

Essay Preview: Black Holes

Report this essay
Page 1 of 5

Black holes are one of the many things in the universe that scientists still have a muddy understanding about. However, with the incredible advances of technology, we are able to understand more than what we have in the past. Today, the only way to observe these incredible objects are by looking for radiation from the gas surrounding it. What are they? Black holes are no more than a Ð'Ñ-dead star.Ð'І A star that is considered Ð'Ñ-aliveÐ'І would be our sun. The sun still produces energy by converting hydrogen into helium, thus considered to be Ð'Ñ-alive.Ð'І Once a star has run out of hydrogen, it begins its dying process. The final stage may result in a black dwarf, which is a small cool object no longer radiating energy, or if the star harbors enough mass it could result in a black hole. Black holes are defined as a collapsed star. The difference between a black dwarf and a black hole is the original mass of the star, which determines whether or not that star will have enough gravitation force to collapse upon its self and form a suction, or to remain as that small cool object, a black dwarf. Why do black holes suck everything in? To understand why material that enters a black hole is unable to escape, one must understand the concept of escape velocity. This is the velocity (speed) at which any material needs to exceed in order to escape from something. Because, as Einstein said, Ð'Ñ-What ever goes up must come down!Ð'І In other words, in order for a space craft to exit the EarthÐ'â„-s atmosphere so that it must not come down, it must exceed a certain speed. In order to figure out the EarthÐ'â„-s escape velocity one takes the square root of the planetÐ'â„-s mass divided by the planet's radius. PLANETÐ'â„-S MASS / PLANETÐ'â„-S RADIUS = ESCAPE VELOCITY On Earth with a radius of 6,500 km, the escape velocity would be 11 km/sec. Therefore to launch any object away from Earth, the object must travel (escape) faster than 11 km/sec. All of this is of course the result of gravity. However, imagine a huge vise that squeezed the Earth to one-quarter its present size. What would then happen to the escape velocity? The velocity would increase because the mass would increase as the radius increased. Thus, taking the square root of a larger number, ending up with a larger number that being the escape velocity. The actual escape velocity of this hypothetical question would double it making it 22 km/sec. Taking a step further, what would happen it the vice were to squeeze the earth to a radius of one centimeter? The escape velocity would then be 300,000 km/sec, the velocity of light!! This means that if this was to actually happen to our Earth, that not even light would be able to escape from the EarthÐ'â„-s surface. For stars that harbor such an immense amount of mass, it is possible for the escape velocity to be greater than that of the speed of light (unlike our sun). The gravity of such a large star can literally crush it on all sides until it is shrunken to the size of a house, a room, a pea and so fourth until it is invisible. This is exactly what occurs to a star of such magnitude as it dies and collapses on itself. Because of the amount of mass within the black holeÐ'â„-s small area, the escape velocity is so great that not even light can escape. As far as it is known there is nothing that exceeds the speed of light, therefore there is nothing that can escape a black hole. What happens to everything that enters a black hole? The black hole its self it called the singularity. It is the contradiction of matter that contains an infinite density and infinite volume. Mass and energy within this point are concentrated into a infinitesimal point where space vanishes and time comes to an end. The area directly outside of the singularity is called the event horizon or Schwarzschild radius, after a German theorist. At this edge, matter that goes in will disappear. the size of the even horizon equals three km multiplied by the objectÐ'â„-s mass. (mass expressed in units of solar masses). Here, where the gravitation force becomes overwhelming and the curvature of space-time so extreme, it folds space-time over on itself. However, the even horizon is not a boundary, but a communications barrier. An analogy helps us to understand this concept. However, it is not complete because one cannot demonstrate it in the forth dimension of time. Pretend that a huge family lives in a town that is on an enormous trampoline or rubber mat. the town decides to hold a family reunion

...

...

Download as:   txt (7.1 Kb)   pdf (98.7 Kb)   docx (11.5 Kb)  
Continue for 4 more pages »
Only available on ReviewEssays.com