Dss Project
Essay by review • April 30, 2011 • Essay • 255 Words (2 Pages) • 1,528 Views
DSS Project:
Objective:
Build a firm demand model.
Variables:
For AFD(dependant):
Independents:
Period
Average Demand
Average Price
Average Advertising
Average advertising 1 quarter ago
Average R&D 1 quarter ago
Average advertising 2 quarters ago
Average R&D 2 quarters ago
For NSOM (dependant):
Independents:
Relative Price
Relative Advertising
Normalized Share of Market 1 quarter ago
Relative R&D1 Quarter ago
Relative Advertising 1 Quarter ago
Relative R&D 2 Quarters ago
Relative Advertising 2 Quarters ago
As we will see not all Independent variables are relevant or needed.
Start by Deseasonalizing and trending the deseasonalized values:
Forecasting results for Avg_Dem Date Observation SeasIndex DeseasObs DeseasFCast DeseasError Forecast Error
Q1 1202.000 0.891 1349.574
Moving averages Q2 1482.000 0.878 1688.491
Q3 1814.000 1.150 1577.187
Span 4 Q4 1261.000 1.081 1165.981
Q1 1840.000 0.891 2065.903 1445.308 620.595 1287.266 552.734
Estimation period Q2 1758.000 0.878 2002.947 1624.391 378.557 1425.738 332.262
Deseas Actual Q3 2227.000 1.150 1936.271 1703.005 233.266 1958.709 268.291
MAE 310.0145 299.4436 Q4 2174.000 1.081 2010.185 1792.776 217.409 1938.873 235.127
RMSE 374.0444 354.8475 Q1 1438.000 0.891 1614.548 2003.826 -389.278 1784.711 -346.711
MAPE 14.08% 14.08% Q2 1739.000 0.878 1981.300 1890.988 90.312 1659.732 79.268
Q3 2580.000 1.150 2243.187 1885.576 357.611 2168.693 411.307
Q4 2742.000 1.081 2535.385 1962.305 573.080 2122.218 619.782
Q1 1643.000 0.891 1844.717 2093.605 -248.889 1864.673 -221.673
Q2 1546.000 0.878 1761.409 2151.147 -389.738 1888.076 -342.076
Q3 2306.000 1.150 2004.957 2096.174 -91.217 2410.913 -104.913
Q4 2441.000 1.081 2257.066 2036.617 220.449 2202.586 238.414
Q1 2358.000 0.891 2647.500 1967.037 680.462 1751.945 606.055
Q2 2505.000 0.878 2854.029 2167.733 686.296 1902.633 602.367
Q3 2922.000 1.150 2540.540 2440.888 99.652 2807.385 114.615
Q4 3038.000 1.081 2809.081 2574.784 234.297 2784.609 253.391
Q1 2395.000 0.891 2689.042 2712.787 -23.745 2416.149 -21.149
Q2 2430.000 0.878 2768.579 2723.173 45.406 2390.147 39.853
Trend line for AFD:
Use the trend formula to forecast AFD, then re-seasonalize the forecast by multiplying by the seasonal indices:
AFD= SI*(62.774*PRD+1384.8)
Calculate residuals, then use regression on the residuals
Results of forward regression for Resid
Step 1 - Entering variable: Avg_Price
Summary measures
Multiple R 0.8465
R-Square 0.7165
Adj R-Square 0.7024
StErr of Est 140.9183
ANOVA Table
Source df SS MS F p-value
Explained 1 1003928.8330 1003928.8330 50.5554 0.0000
Unexplained 20 397159.5000 19857.9750
Regression coefficients
Coefficient Std Err t-value p-value Lower limit Upper limit
Constant 15444.5459 2189.7488 7.0531 0.0000 10876.8100 20012.2818
Avg_Price -41.5045 5.8373 -7.1102 0.0000 -53.6809 -29.3282
Step 2 - Entering variable: Avg_Adv
Summary measures Change % Change
Multiple R 0.8786 0.0322 3.8%
R-Square 0.7720 0.0555 7.7%
Adj R-Square 0.7480 0.0456 6.5%
StErr of Est 129.6643 -11.2540 -8.0%
ANOVA Table
Source df SS MS F p-value
Explained 2 1081644.5830 540822.2915 32.1672 0.0000
Unexplained 19 319443.7500 16812.8289
Regression coefficients
Coefficient Std Err t-value p-value Lower limit Upper limit
Constant 13581.4355 2193.3196 6.1922 0.0000 8990.7649 18172.1062
Avg_Price -37.2011 5.7320 -6.4901 0.0000 -49.1982 -25.2040
...
...