Feg 1034 Calculus & Analysis 1
Essay by Sanjeetha • December 6, 2017 • Research Paper • 1,195 Words (5 Pages) • 959 Views
FEG 1034 Calculus 1 Chapter 02[pic 1]
[pic 2]
Chapter 2
Function and limit
[pic 3]
FEG 1034 Calculus & Analysis 1
FEG 1034 Calculus 1 Chapter 05[pic 4]
[pic 5]
What thing will come out in Final
[pic 6]
2.1 Limit
- Vertical Asymptotes
- Horizontal Asymptotes
2.2 Inverse Function
- Characteristic of inverse function
- Horizontal test
- Second derivative test
2.3 Derivative of inverse function
FEG 1034 Calculus & Analysis 1 2
FEG 1034 Calculus 1 Chapter 02[pic 7]
[pic 8]
2.1 Limit
[pic 9]
= 3−1 and = 2 + + 1
[pic 10][pic 11][pic 12]
−1
[pic 13]
Both graph are the same, but just that can’t include = 1, which is not continuous when = 1.
[pic 14]
FEG 1034 Calculus & Analysis 1 3
FEG 1034 Calculus 1 Chapter 02[pic 15]
[pic 16]
2.1.1 Vertical Asymptotes
[pic 17]
How to determine the vertical asymptotes?
- Check the existence of denominator (must be simplify)
- Check the value to make denominator become zero, hence make the function become undefined.
For this example, the vertical asymptotes is in = 2.
FEG 1034 Calculus & Analysis 1 4
FEG 1034 Calculus 1 Chapter 02[pic 18]
[pic 19]
Example 1 – find vertical asymptotes
Find the vertical asymptotes for the functions.
a). = 1
b). = 1
[pic 20]
FEG 1034 Calculus & Analysis 1 5
FEG 1034 Calculus 1 Chapter 02[pic 21]
[pic 22]
2.1.2 Horizontal Asymptotes
[pic 23]
How to determine the horizontal asymptotes?
- If the limit at infinite is defined, then there is the horizontal asymptotes.
=
For this example,
3 | |||||||
lim | = −0 | 3 | = 0 | ||||
→−∞ −2 | −∞ |
lim 3 = 0
[pic 24]
→+∞ −2
3
[pic 25][pic 26][pic 27][pic 28][pic 29]
+∞ = 0
horizontal asymptotes
at = .
FEG 1034 Calculus & Analysis 1 6
FEG 1034 Calculus 1 Chapter 02[pic 30]
[pic 31]
Example 2 – find horizontal asymptotes
[pic 32]
Find the horizontal asymptotes for the functions.
2 + 1 | 2 | 1 | 1 | |||||||||||||||
= | = 1 + | = 1 − | + | |||||||||||||||
2 − 1 | 2 − 1 | + 1 | − 1 | = | ||||||||||||||
lim | 2 | + 1 | = 1 + | lim | − | 1 | + | 1 | = 1 | |||||||||
− 1 | + 1 | − 1 | ||||||||||||||||
→−∞ 2 | →−∞ | |||||||||||||||||
lim | 2 | + 1 | = 1 + | lim | − | 1 | + | 1 | = 1 | |||||||||
− 1 | + 1 | − 1 | ||||||||||||||||
→+∞ 2 | →+∞ |
[pic 33][pic 34]
...
...