Investigation: Density of Play-Doh
Essay by jji_jessica • May 24, 2018 • Lab Report • 423 Words (2 Pages) • 2,482 Views
Physics IA
Jessica Ji
Investigation: Density of Play-doh |
Jessica Ji |
Aim |
Chemical and equipment list |
Play-doh |
Vernier caliper |
Lid of the play-doh box |
Electrical balance |
Ruler |
Method |
1. Take out the play-doh from the box. |
2. Use hand or/and ruler or/and the lid to make the play-doh into wanted shapes: ball, cuboid, cylinder, and the shape of lid. |
3. Measure the lengths of the sides/perimeters/depths of the play-doh. |
4. Use electrical balance to measure the mass of the play-doh in different shapes. |
5. Record the data acquired above. |
6. Calculate the volume of the play-doh and the density of play-doh. |
7. Repeat step 1-6 by making different shapes with different masses of play-doh. |
Results and discussion
Quantitative Data
Equipment | Uncertainty |
electrical balance | ±0.001g |
vernier caliper | ±0.002cm |
Raw data table:
Mass(g±0.001g) of play-doh vs. Lengths/Perimeters(cm±0.002cm) of the shape of play-doh | |||||
Shape of Play-doh | Mass(g±0.001g) | Length(cm±0.002cm) | Perimeter(cm±0.002cm) | ||
Ball | 7.751 | / | 2.170 | ||
18.721 | / | 3.060 | |||
26.936 | / | 3.350 | |||
17.755 | / | 2.810 | |||
Cuboid | 0.333 | 0.650 | 0.700 | 0.650 | / |
Cylinder | 6.830 | 6.11 | 1.555 | ||
Lid | 27.451 | 0.700 | 5.900 | ||
26.900 | 0.700 | 5.900 | |||
27.063 | 0.700 | 5.900 | |||
26.418 | 0.700 | 5.900 |
Calculation(Volume of Ball): | |
Data processing | Error Propagation |
Formula: [pic 1] | |
V₁= 4×π×(3.350cm÷2)³÷3 V₁=19.90cm³ V₂= 4×π×(2.170cm÷2)³÷3 V₂=5.350cm³ V₃= 4×π×(3.060cm÷2)³÷3 V₃=15.00cm³ V₄= 4×π×(2.810cm÷2)³÷3 V₄=11.612cm³ | 0.002cm÷3.350cm×100%×19.90cm³ =0.01cm³ 0.002cm÷2.170cm×100%×5.35cm³ =0.005cm³ 0.002cm÷3.060cm×100%×15.00cm³ =0.01cm³ 0.002cm÷2.810cm×100%×11.62cm³ =0.008cm³ |
Calculation(cube&cuboid): | |
Data processing | Error Propagation |
Formula: V=l1×l2×l3 | |
V=0.650cm×0.700cm×0.650cm V=0.306cm³ | (0.002cm³÷0.650cm³+0.002cm³÷0.650cm³+0.002cm³÷0.700cm³)×100%×0.306cm³ =0.003cm³ |
Calculation(Cylinder&Lid): | |
Data processing | Error Propagation |
Formula: [pic 2] | |
V₁=π×(1.555cm÷2)²×6.110cm V₁=6.13cm³ V₂=π×(5.900cm÷2)²×0.700cm V₂=19.14cm³ | (0.002cm÷1.555cm×2+0.002cm÷6.110cm)×100%×6.13cm³ =0.02cm³ (0.002cm÷5.900cm×2+0.002cm÷0.700cm)×100%×19.14cm³ =0.07cm³ |
Mass of Play-doh vs. Volume of Playdoh | ||
Shape of Play-doh | Mass(g±0.001g) | Volume(cm³) |
Ball | 26.936 | 19.90 |
7.751 | 5.350 | |
18.721 | 15.00 | |
17.755 | 11.612 | |
Cuboid | 0.333 | 0.306 |
Cylinder | 6.830 | 6.13 |
Lid | 27.451 | 19.1 4 |
26.900 | 19.1 4 | |
27.063 | 19.1 4 | |
26.418 | 18.49 |
...
...