Prospect Theory
Essay by review • February 9, 2011 • Essay • 832 Words (4 Pages) • 958 Views
Prospect theory
Prospect theory was developed by Daniel Kahneman and Amos Tversky in 1979 as a psychologically realistic alternative to expected utility theory. It allows one to describe how people make choices in situations where they have to decide between alternatives that involve risk, e.g. in financial decisions. Starting from empirical evidence, the theory describes how individuals evaluate potential losses and gains. In the original formulation the term prospect referred to a lottery.
The theory describes such decision processes as consisting of two stages, editing and evaluation. In the first, possible outcomes of the decision are ordered following some heuristic. In particular, people decide which outcomes they see as basically identical and they set a reference point and consider lower outcomes as losses and larger as gains. In the following evaluation phase, people behave as if they would compute a value (utility), based on the potential outcomes and their respective probabilities, and then choose the alternative having a higher utility.
The formula that Kahneman and Tversky assume for the evaluation phase is (in its simplest form) given by where are the potential outcomes and their respective probabilities. v is a so-called value function that assigns a value to an outcome. The value function (sketched in the Figure) which passes through the reference point is s-shaped and, as its asymmetry implies, given the same variation in absolute value, there is a bigger impact of losses than of gains (loss aversion). In contrast to Expected Utility Theory, it measures losses and gains, but not absolute wealth. The function w is called a probability weighting function and expresses that people tend to overreact to small probability events, but underreact to medium and large probabilities.
To see how Prospect Theory (PT) can be applied in an example, consider a decision about buying an insurance policy. Let us assume the probability of the insured risk is 1%, the potential loss is $1000 and the premium is $15. If we apply PT, we first need to set a reference point. This could be, e.g., the current wealth, or the worst case (losing $1000). If we set the frame to the current wealth, the decision would be to either pay $15 for sure (which gives the PT-utility of v( в?' 15)) or a lottery with outcomes $0 (probability 99%) or $-1000 (probability 1%) which yields the PT-utility of . These expressions can be computed numerically. For typical value and weighting functions, the former expression could be larger due to the convexity of v in losses, and hence the insurance looks unattractive. If we set the frame to $-1000, both alternatives are set in gains. The concavity of the value function in gains can then lead to a preference for buying the insurance.
We see in this example that a strong overweighting of small probabilities can also undo the effect of the convexity of v in losses: the potential outcome of losing $1000 is overweighted.
The interplay of overweighting of small probabilities and concavity-convexity of the value function leads to the so-called four-fold pattern of risk attitudes: risk-averse behavior in gains involving moderate probabilities
...
...