ReviewEssays.com - Term Papers, Book Reports, Research Papers and College Essays
Search

Stem Cell Research

Essay by   •  March 6, 2011  •  Essay  •  1,010 Words (5 Pages)  •  931 Views

Essay Preview: Stem Cell Research

Report this essay
Page 1 of 5

Stem cellular structures are cells found in most multi-cellular organisms. They are capable of retaining the ability to reinvigorate themselves through mitotic cell division and can differentiate into a diverse range of specialized cell types. Research in the stem cell field grew out of findings by Canadian scientists Ernest A. McCulloch and James E. Till in the 1960s.[1][2] The two broad types of mammalian stem cells are: embryonic stem cells that are found in blastocysts, and adult stem cells that are found in adult tissues. In a developing embryo, stem cells can differentiate into all of the specialized embryonic tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing specialized cells, but also maintain the normal turnover of regenerative organs, such as blood, skin or intestinal tissues.

As stem cells can be grown and transformed into specialized cells with characteristics consistent with cells of various tissues such as muscles or nerves through cell culture, their use in medical therapies has been proposed. In particular, embryonic cell lines, autologous embryonic stem cells generated through therapeutic cloning, and highly plastic adult stem cells from the umbilical cord blood or bone marrow are touted as promising candidates.[3]

Embryonic stem cells

Main article: Embryonic stem cell

Embryonic stem cell lines (ES cell lines) are cultures of cells derived from the epiblast tissue of the inner cell mass (ICM) of a blastocyst or earlier morula stage embryos.[6] A blastocyst is an early stage embryoвЂ"approximately four to five days old in humans and consisting of 50вЂ"150 cells. ES cells are pluripotent and give rise during development to all derivatives of the three primary germ layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adult body when given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extra-embryonic membranes or the placenta.

Nearly all research to date has taken place using mouse embryonic stem cells (mES) or human embryonic stem cells (hES). Both have the essential stem cell characteristics, yet they require very different environments in order to maintain an undifferentiated state. Mouse ES cells are grown on a layer of gelatin and require the presence of Leukemia Inhibitory Factor (LIF).[7] Human ES cells are grown on a feeder layer of mouse embryonic fibroblasts (MEFs) and require the presence of basic Fibroblast Growth Factor (bFGF or FGF-2).[8] Without optimal culture conditions or genetic manipulation,[9] embryonic stem cells will rapidly differentiate.

A human embryonic stem cell is also defined by the presence of several transcription factors and cell surface proteins. The transcription factors Oct-4, Nanog, and SOX2 form the core regulatory network that ensures the suppression of genes that lead to differentiation and the maintenance of pluripotency.[10] The cell surface antigens most commonly used to identify hES cells are the glycolipids SSEA3 and SSEA4 and the keratan sulfate antigens Tra-1-60 and Tra-1-81. The molecular definition of a stem cell includes many more proteins and continues to be a topic of research.[11]

After twenty years of research, there are no approved treatments or human trials using embryonic stem cells. ES cells, being totipotent cells, require specific signals for correct differentiation - if injected directly into the body, ES cells will differentiate into many different types of cells, causing a teratoma. Differentiating ES cells into usable cells while avoiding transplant rejection are just a few of the hurdles that embryonic stem cell researchers still face.[12] Many nations currently have moratoria on either ES cell research or the production of new ES cell lines. Because of their combined abilities of unlimited expansion and pluripotency, embryonic stem cells remain a theoretically potential source for regenerative medicine and tissue replacement

...

...

Download as:   txt (6.5 Kb)   pdf (94.4 Kb)   docx (11.3 Kb)  
Continue for 4 more pages »
Only available on ReviewEssays.com