The Effects of Temperature
Essay by review • November 17, 2010 • Research Paper • 2,792 Words (12 Pages) • 1,639 Views
Running Head: THE EFFECTS OF TEMPERATURE
The Effects of Temperature and Gender on Concentration
Annie Rice
Albertson College of Idaho
Abstract
The function of this study was to identify a potential correlation between gender and temperature that cause a direct affect on concentration. Participants assigned into hot (H), warm (W), and cold (C) condition groups observed a video clip in preset temperatures and completed surveys to measure their comprehension. The test results were not significant; however, a significant result appeared in the H condition with a 95 percent confidence interval. The males scored significantly lower in the H condition which indicates an existing correlation of gender and temperature results leading to an indirect affect on concentration.
The Effects Temperature and Gender on Concentration
Previous studies suggest that temperature influences the cognitive functioning of the brain. There have been no significant results to conclude temperature as the main affect however as an additional variable is integrated into the results a significance is produced. One study investigated the long-term memory development of male and female rats and concluded that temperature set at a hypothermic level affects memory retention. Additional research supports a comparable when tested in similar conditions. (Misanin, Nagy, Keiser & Bowen, 1971).
Tympanic membrane temperature was measured in the chimp subjects. In the study the chimps were to be involved in 1 of 3 cognitive tasks. These included matching to sample, visual-spatial discrimination, and a motor task. Every 20 minutes the tympanic membrane temperature was measured. This data was the first to show that physical functions of chimpanzees were lateralized. It also suggests the cognitive functions are associated with changes in cerebral blood flow.
In this study, data are presented on the use of a temperature gauge to assess changes in cerebral blood flow as reflected by changes in the tympanic membrane (TM) temperature. The TM is warmed by the brain and cooled by branches extending from the carotid artery (Webb, 1973). The TM also shares blood vessels with the hypothalamus, and TM temperature is highly correlated with the temperature of the hypothalamus (Benzinger, 1969; Dickey, Ahlgren, & Stephen, 1970; Rawson & Hammell, 1963). Two studies in humans have attempted to measure lateralized changes in cerebral temperature in relation to cognitive challenge. Meiners and Dabbs (1977) reported decreased temperature in the right ear (right hemisphere) for a spatial task compared to the left ear (left hemisphere). No differences in the reduction of ear temperature were evident for a verbal task. Swift (1991) similarly examined lateralized changes in TM temperature for verbal and spatial cognition tasks but did not find overall lateralized changes in TM temperature. The inconsistencies between these studies could be due in part to procedural and task differences. For example, Swift required participants to depress a key in response to different demands of the tasks but made no attempt to account for the effects of this motor response on temperature change. This is particularly significant because all participants were required to use their right hand to respond, which may have induced an asymmetry in temperature unrelated to the cognitive demands of the task. More recently, asymmetries in TM temperature have been found to be associated with stress behavior in human children and rhesus monkeys (Boyce, Higley, Jemerin, Champoux, & Suomi, 1996). Left-right differences in TM temperature were positively correlated with locomotion during social separation in monkeys and negatively correlated with measures of cortisol at 4 months of age.
there is a progressive deterioration in performance with increasing exposure to cold. This is reflected in the number of correct identifications and correspondent signal omissions. It should be noted that the incidence of commission errors did not vary with exposure time. The overall performance decrement is accompanied by a progressive reduction in core temperature that follows the characteristic transient increase on immediate exposure to cold ( Figure 12 ). These data suggest, therefore, that sustained attention decrement is related to dynamic deep body temperature change, although in the above case it is a reduction in core temperature level. This finding is consistent with information presented previously on performance under dynamic body temperature decrease as given in the reports of Mackworth (1950) and Pepler (1953 , 1958 ). (Hancock 1986)
This study followed the long-term memory development of male and female rats. At about 9 days old the rats started to show signs of intersession improvement when the sessions lasted at 24 hour intervals. Rats that were younger than 9 days old shows signs of short-term memory retention. During the experiment it was indicated that hypothermia caused some complications on 24 hour memory retention and that is depended on the time from training to hypothermal treatment. Research has shown that on adults it effects long-term memory. (Misanin, Nagy, Keiser, & Bowen, 1971)
In this study, the authors examined the role of task stressfulness. Female hooded rats were tested during proestrus or estrus on the hidden-platform water maze in warm (33oC) or cold (19oC) water. There were no effects of cycle or temperature, but estrous phase interacted with temperature such that proestrous rats performed better overall under the warm condition and estrous rats performed better under the cold condition. (Rubinow, 2004)
Razmjou, S. & Kjellberg, A. (1992). Sustained attention and serial responding in heat: Mental effort in the control of performance [Electronic version]. Aviation, Space, & Environmental Medicine, 63, 594-601.
The researchers based their study on previous studies which had found that heat (above 40 degrees Celsius was detrimental to sustained concentration. In their study, 20 participants were subjected to temperatures above 40 degrees Celsius. The participants were tested on body temperature, heart rate and reaction time. They found reaction times were negatively affected and a correlation in increased body temperature with increased heart rate. This supports our hypothesis that increased temperature may be responsible
...
...