ReviewEssays.com - Term Papers, Book Reports, Research Papers and College Essays
Search

Metro Ethernet

Essay by   •  October 31, 2010  •  Research Paper  •  1,612 Words (7 Pages)  •  1,951 Views

Essay Preview: Metro Ethernet

Report this essay
Page 1 of 7

Metro Ethernet

Disclaimer; this is intended to be an introductory technical article; certain details have been excluded in the interests of space and clarity. Network design examples are presented to illustrate specific technical points and are not intended to fully complete.

Historically WAN's (Wide Area Networks) and LAN's (Local Area Networks) have relied on independent technologies. At a physical layer WAN technologies today continue to be based largely on legacy TDM systems that were built initially to support voice, video and early data communications in a reliable fashion. WAN connectivity over distance often requires the use of regenerators and meet points between multiple Telco suppliers that may span the globe. Without strict adherence to standards, these connections would not function. WAN technologies depend on highly complex and expensive equipment, which can guarantee inter-operability and "five 9's" reliability required to support the millions of paying customers utilizing the network.

Meanwhile, the advent of early PC's and the recognition of the value in networking devices together gave rise to Local Area Networks. These LAN's were developed from a business customer perspective, which placed more emphasis on costs and ease of use over reliability. There were a number of different competing LAN technologies, two of the most common being Token Ring (IBM) and Ethernet (everyone else). The triumph of Ethernet in the marketplace, to the extent where it is included in every PC, game console and some refrigerators, provides a consistent and relatively inexpensive way to build internal networks with relative ease.

As the internal PC networks continued to grow and thrive a need to connect disparate facilities together resulted in development of bridges, gateways and ultimately routers for the sole purpose of connecting LANs to other LAN's located anywhere from several miles to several thousand miles apart. These devices allow disparate interface types to be connected by performing the necessary modifications to the signal and protocols to allow WAN and LAN equipment to understand one another. Because LAN Ethernet and WAN TDM networks were so vastly different in their technical make-up these intermediary devices were needed to allow inter-communication to occur. While the benefits of enterprise connectivity are great, they come at the cost of special hardware, software and application complexity as the speed of the network can change by a factor of 100 between a client and the server (100 Meg bit per second Ethernet to 1.5 Meg bit per second WAN).

The ever increasing speed of LAN technology (Gig Ethernet is now at Best Buy), and in PCs and servers in addition to increasing complexity of applications and the need to exploit the large amount of data that already exists, causes users to require connectivity that is faster, cheaper, and more simple to own and operate. In recognition of these demands the telecomm industry has been working for the past several years to develop common standards, which will allow domestic and international end-to-end Ethernet services to be deployed as easily as T1. Today these standards do not yet exist.

Metro Ethernet is a generic name for a set of services that are used to replace traditional WAN connectivity with Ethernet connectivity. The use of the term Metro is because the normal range of these services is in the 10's of miles and that is thought of as a Metropolitan area.

There are several drivers for Metro Ethernet. First the low cost of Ethernet hardware. While the cost of an OC-3 (155Mb) ATM interface is in the 1000s of dollars, the cost of a Gigabit Ethernet port in a switch is in the 100s or 10s of dollars. The other enabler is the increased deployment of what are called multiservice networks by the carriers. Multiservice networks are networks that are able to be used for multiple service offerings with the same network infrastructure. The services are voice, Internet access, dial access and so on. Multiservice networks can be implemented on several layers of the ISO model from fiber to SONET to IP depending on the carriers and its base of equipment. Many carriers offer several technologies for multiservice networks.

We are initially using Metro Ethernet to replace SONET based WAN services with Ethernet services the difference can be shown below.

The traditional WAN environment used in extended campus is below

Here a Layer 3 Ethernet switch is connected to a router which is connected to an ATM switch which is connected to the carrier. The router and its associated interfaces is a rather expensive system and costs upward of $20,000 with bandwidth limited to 155 Mbps. To increase the bandwidth beyond 155 Mbps would involve an expensive upgrade or replacement of the router.

In the metro case the Ethernet switch is connected directly to Telco equipment. At this time we use a 1 Gig bps connection with a bandwidth from the Telco of 155 Meg. This dynamic bandwidth works much like the Committed Information Rate that we use when we provision remote Frame Relay WAN connections. This can be increased by the Telco without the need of us upgrading or replacing any of our equipment. The Ethernet switch acts as a router and even supports BGP allowing us to dual attach this site either with a second metro Ethernet or to the MCI MPLS Layer 3 network to provide dynamic DR and direct attachment to non local data centers. We can also (when the provider supports it) leverage BGP support to attach to the Internet via metro Ethernet.

EIS has recognized the evolution of Metro Ethernet seamless LAN connectivity between locations over any distance. Although the industry has not yet reached the point where Telco Ethernet services are ubiquitous we have decided to remain on the forefront of this evolution by pushing the technology when an opportunity arises. In partnership with our current providers EIS began the process of understanding where each supplier stood on the evolutionary scale. Initial opportunities were first presented through traditional RBOC suppliers who began offering local metro services within the past two years. We deployed the original metro Ethernet

...

...

Download as:   txt (9.9 Kb)   pdf (126.6 Kb)   docx (13 Kb)  
Continue for 6 more pages »
Only available on ReviewEssays.com